
1 DE2 Computing Tetromino Coursework

Tetromino Coursework

Abstract:
The Tetromino Coursework proposed a challenge to fill a grid of size up to

1000x1000 with 19 different Tetromino shapes, with 2 constraints: 1. The

amount of each Tetromino shape used is determined by the proposed

“perfect solution” and 2. The solution must mimic the “perfect solution” as

much as possible and will be reviewed for its accuracy and the code’s running

time. The provided solution includes two “direction prioritised depth first

searches”, and a final optimising function for increased accuracy.

Evaluation:
Using a deep copied version of the target matrix where a blank space is 0 and

a block is 1 (defined as new_tar in the code), the solution aims to find

neighbours, not the most appropriate ones, but the most prioritised ones –

explained more in Main.py. To top off the accuracy at the end, I have traversed new_tar again to check

for 4 unoccupied spaces (1’s), and if the appropriate Tetromino can be added, and finally 3 unoccupied

spaces as well as one completely blank space (3 x 1’s and 1 x 0), where the result would return 1

“EXCESS PIECES” but would still fill in 3 spaces.

The initial solution containing CHECK and CHECK2 without Final, was solving accurately for the first 60%

of the board, but then the function couldn’t use pieces that it found using the direction prioritising

searching method. Therefore, Final was added which took the remaining Tetromino pieces and

traversed the most abundant remaining Tetromino coordinates to look for any possible spaces. These

two strategies combined, create the complete solution which focuses both on accuracy and speed, and

it returns with quite good data:

Matrix Size 10x10 100x100 1000x1000

Density Time (s) Accuracy% Time (s) Accuracy% Time (s) Accuracy%

0.4 0.00049 84.00 0.05759 88.30 7.03278 88.49

0.6 0.00073 78.00 0.07973 88.31 9.33175 88.51

0.9 0.00088 79.66 0.11878 91.41 11.1171 91.75

Table 1: Running Times and accuracy of different densities and sizes

Main.py:
Tetris and its components:

Initially within the function Tetris [line 4-17], a matrix M is required from Tetris which is the proposed

solution matrix [line 8]. This must be in the form of a list of tuples, i.e. [(a,b) , (0,0)] where ‘a’ is the

Tetromino ID (1-19), and ‘b’ is the pieceID, which determines which order the tetrominoes are placed,

which has been done by a global variable called ‘PID’ [line 219]. Another useful matrix to have is the

target matrix, this has been copied into Tetris and has been renamed new_tar. This is a matrix where

instead of each (a,b) term, blank spaces are a 0, and spaces where parts of a Tetromino exist are 1 [line

6]. This has proven very useful identifying places to add Tetrominoes.

2 DE2 Computing Tetromino Coursework

CHECK, CHECK2:

The solution includes 11 functions including Tetris 3 of which are used to determine which tetrominoes

should be used: CHECK [line 18-50], CHECK2 [line 52-84] and Final [line 265-287]. Both CHECK and

CHECK2 use a prioritised direction to find neighbours, i.e. CHECK would find neighbours in the order: 1.

Left 2. Right 3. Down, and if there wasn’t a neighbour there, it would then check its predecessor node,

(if predecessor node has no more neighbours, then move on), thus prioritising shapes 3, 9, 15, 7, etc.

CHECK2’s priority is 1. Down 2. Left 3. Right, thus preferring shapes 2, 8, 4, 19, and so on. This produces

a semi-Greedy algorithm, as it wants to put certain tetrominoes in and if it can’t, moves on.

 Perfect Solution CHECK’s Solution CHECK2’s Solution

Figure 1: Demonstration of “Direction prioritised depth first search”

 This is a depth first search algorithm because CHECK and CHECK2 don’t consider predecessors until

they must. The algorithm is purely trying to go the direction that it prioritises. Breadth first search was

considered but was not utilised because it would find more arbitrary shapes but would also create many

small gaps between each Tetromino filled section.

While this method seems good at first, a large flaw

is the implementation of limit_tetris. This is the

collection of tetrominoes used in the perfect

solution and constrains the solution to be purely

based upon those pieces as well. In the example on

the left, limit_tetris has a limited amount of

tetrominoes, and once CHECK or CHECK2 find

differently orientated tetrominoes which

limit_tetris don’t have enough of, it cannot place

that shape. Hence creating an accurate top 50% of

the solution and much worse bottom 50%.

The top half will also be separated into sections.

The top section will be shapes from CHECK and the

lower section in the top half will be from CHECK2.

This is expected as CHECK2 will be able to use

some tetrominoes which have not been placed and

then find them with the second direction

prioritised depth first search.

 Figure 3: 100x100 using CHECK and CHECK2 only

Figure 2: 100x100 using CHECK and CHECK2 only

3 DE2 Computing Tetromino Coursework

Final:

After CHECK and CHECK2, what’s left are still many pieces in limit_tetris and an average of 40% of the

solution matrix not filled. The remaining spaces have been found by the initial functions but not enough

limit_tetris tetrominoes are provided to append those pieces, hence the lack of pieces near the bottom

50% of the solution.

Final is the last optimisation needed to fill in the remaining parts. Firstly, the remaining available

tetrominoes are identified and put into a greedy priority queue. This has been done by sorting

limit_tetris by the most abundant piece remaining [line 269]. A list

of set of coordinates of all 19 tetrominoes is created to cross

reference PID and Tetromino ID. Sets of coordinates are used as

they have no order and therefore when it comes to appending the

tetrominoes into the solution matrix, if both sets contain the same

coordinates, they are the same (figure 4). This make it easier to

identify tetrominoes instead of immutable tuples or ordered lists.

CHECK and CHECK2 returns new_tar as a matrix of not only ’1’s and ‘0’s, but also with ‘3’s where the 3 is

where a piece has been placed and fixed and therefore should not be touched. The function Final will

call X as a variable which is either 4 or 3. When X = 4, Final is trying to find the most abundant shape

that will fit into the solution where there are currently 4 ‘1’s. When X = 3, Final is again trying to find the

most abundant shape that will fit not into a 4 connected ‘1’s but will accept 3 connected ‘1’s and one

blank space where the perfect solution doesn’t have a block.

Final then traverses new_tar from top left to bottom right again to find coordinates which are 1s. When

a first ‘1’ is identified at new_tar[y][x], Final checks the coordinates of the most abundant tetromino

from limit_tetris, referenced to [y][x] as its origin point (0,0). Final also has a counter = S [line 275] which

adds up the values of new_tar[y][x] where (y,x) are the coordinates of the most abundant shape and

new_tar[y][x] should return a 0, 1, or 3.

In figure 5, the blue blocks are ‘1’s and green are ‘3’s.

Final would be trying to put the most abundant piece

into coordinate (2,2). There is overlap of 2 blocks in the

green area, meaning S + 3 + 3. The white blank space is

0, and the one blue block is 1. This gives S a total of 7.

Final equates the called value of X and the value of S. if

S = X [line 284], which is either 3 or 4, then the function

decides that adding this tetromino would be beneficial.

Traversing through new_tar:

Using the function: locate [line 190-197] the solution traverses

through the matrix from the top left corner, scans the rows from left

to right then the next row when finished, ending up at the bottom

right corner. As new_tar is a matrix of mainly ‘1’s (existing

Tetromino needing placing) and ‘0’s (no Tetromino), CHECK and

CHECK2 can easily identify the shapes that it wants to place. Figure 6: Visualising new_tar

Figure 4: Sets of Coordinates

Figure 5: Sets of Coordinates

4 DE2 Computing Tetromino Coursework

Notation in new_tar exists as new_tar[y][x] where the cartesian plane for the solution provided has

positive y going downwards and positive x going to the right, with the origin at the top left corner.

Within CHECK and CHECK2 when new_tar[y][x] == 1, and a piece can be placed on 4 coordinates all with

value of ‘1’ in the matrix, the Tetromino is appended and all the ‘1’s become ‘0’s. This is to prevent the

algorithms finding the same coordinate and overlapping. This also is a smaller version of a reduction

algorithm as after each piece is found, new_tar has less ‘1’s to consider.

Initially, recursion has been used to find tetrominoes in CHECK and CHECK2, but this direct

implementation quickly led to hitting maximum recursion depth limit. Therefore, a less direct method

has been used where CHECK dips in and out of the function checkaround [line 90-128], allowing CHECK

to find its Tetromino and then come out of the function. This means the function CHECK can find a 4-

node traversal tree and continue to find the next tree without having stacked recursion.

Placing tetrominoes:

Every time a Tetromino has been found and needs placing, the coordinates of the piece are added to a

list called ‘remove’ [lines 237, 224]. There are 2 placing functions, both firstly check if ‘remove’ has 4

elements. If it does, it takes the associated Tetromino ID (called into the function) and the global PID in

the form (TID, PID) and changes the items in M with coordinates from ‘remove’ into the new form. Once

this is done, the values within new_tar are also changed, as this insures new_tar information only

changes when actual tetrominoes have been placed and are fixed. The function appending is used for

CHECK and CHECK2, and each time a piece is placed, the new_tar value changes from ‘1’ to ‘3’. Final

uses its own placing function: Append, which subtracts 10 from each new_tar coordinate when a block is

placed – making the new number on ‘-9’ on new_tar.

Running Time:

The running time of all algorithms combined gives a

linear running time – constrained by: Big Oh (n), (upper

asymptotic time) where the combined algorithm is 3

times the time of just CHECK and CHECK2. The solution

has kept the time down by using linear or constant time

algorithms, such as more ‘if’ statements than ‘for’ loops.

Errors:

A common error found was the boundary error. This error comes up

because either new_tar is trying to access negative coordinates or

place a shape with coordinates within negative boundaries. As you

can see in figure 8, there are 2 pieces with the wrong TID and PID.

Their numbers are also shown on the left edge of the solution. Both

pieces have wrapped around because of the negative coordinates

that the algorithms are trying to append. The solution is to simply

define boundaries clearly. This has been done by checking if

new_tar[y+a][x+b] (where (a,b) are the coordinates within ‘remove’),

is greater than 0, whilst also being less than the length of the target

solution and the height of the target solution [line 278].

WARNING: 2 pieces have a wrong shapeID. They are

labelled in image of the solution, and their PieceID

are: [11, 14].

Figure 8: Boundary Error

Figure 7: Total Running Time vs elements

y = 4E-06x

y = 1E-05x

-3

2

7

12

0 500000 1000000R
u

n
n

in
g

ti
m

e
(s

)

Number of Elements (n)

Linear (CHECK and CHECK2)

