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Tetromino Coursework 

Abstract: 
The Tetromino Coursework proposed a challenge to fill a grid of size up to 

1000x1000 with 19 different Tetromino shapes, with 2 constraints: 1. The 

amount of each Tetromino shape used is determined by the proposed 

“perfect solution” and 2. The solution must mimic the “perfect solution” as 

much as possible and will be reviewed for its accuracy and the code’s running 

time. The provided solution includes two “direction prioritised depth first 

searches”, and a final optimising function for increased accuracy. 

Evaluation: 
Using a deep copied version of the target matrix where a blank space is 0 and 

a block is 1 (defined as new_tar in the code), the solution aims to find 

neighbours, not the most appropriate ones, but the most prioritised ones – 

explained more in Main.py. To top off the accuracy at the end, I have traversed new_tar again to check 

for 4 unoccupied spaces (1’s), and if the appropriate Tetromino can be added, and finally 3 unoccupied 

spaces as well as one completely blank space (3 x 1’s and 1 x 0), where the result would return 1 

“EXCESS PIECES” but would still fill in 3 spaces.  

The initial solution containing CHECK and CHECK2 without Final, was solving accurately for the first 60% 

of the board, but then the function couldn’t use pieces that it found using the direction prioritising 

searching method. Therefore, Final was added which took the remaining Tetromino pieces and 

traversed the most abundant remaining Tetromino coordinates to look for any possible spaces. These 

two strategies combined, create the complete solution which focuses both on accuracy and speed, and 

it returns with quite good data: 

Matrix Size 10x10 100x100 1000x1000 

Density Time (s) Accuracy% Time (s) Accuracy% Time (s) Accuracy% 

0.4 0.00049 84.00 0.05759 88.30 7.03278 88.49 

0.6 0.00073 78.00 0.07973 88.31 9.33175 88.51 

0.9 0.00088 79.66 0.11878 91.41 11.1171 91.75 
 

Table 1: Running Times and accuracy of different densities and sizes 

Main.py: 
Tetris and its components: 

Initially within the function Tetris [line 4-17], a matrix M is required from Tetris which is the proposed 

solution matrix [line 8]. This must be in the form of a list of tuples, i.e. [ (a,b) , (0,0) ] where ‘a’ is the 

Tetromino ID (1-19), and ‘b’ is the pieceID, which determines which order the tetrominoes are placed, 

which has been done by a global variable called ‘PID’ [line 219]. Another useful matrix to have is the 

target matrix, this has been copied into Tetris and has been renamed new_tar. This is a matrix where 

instead of each (a,b) term, blank spaces are a 0, and spaces where parts of a Tetromino exist are 1 [line 

6]. This has proven very useful identifying places to add Tetrominoes.  
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CHECK, CHECK2: 

The solution includes 11 functions including Tetris 3 of which are used to determine which tetrominoes 

should be used: CHECK [line 18-50], CHECK2 [line 52-84] and Final [line 265-287]. Both CHECK and 

CHECK2 use a prioritised direction to find neighbours, i.e. CHECK would find neighbours in the order: 1. 

Left 2. Right 3. Down, and if there wasn’t a neighbour there, it would then check its predecessor node, 

(if predecessor node has no more neighbours, then move on), thus prioritising shapes 3, 9, 15, 7, etc. 

CHECK2’s priority is 1. Down 2. Left 3. Right, thus preferring shapes 2, 8, 4, 19, and so on. This produces 

a semi-Greedy algorithm, as it wants to put certain tetrominoes in and if it can’t, moves on. 

 

                                       Perfect Solution       CHECK’s  Solution     CHECK2’s Solution 

Figure 1: Demonstration of “Direction prioritised depth first search” 

 This is a depth first search algorithm because CHECK and CHECK2 don’t consider predecessors until 

they must. The algorithm is purely trying to go the direction that it prioritises. Breadth first search was 

considered but was not utilised because it would find more arbitrary shapes but would also create many 

small gaps between each Tetromino filled section. 

While this method seems good at first, a large flaw 

is the implementation of limit_tetris. This is the 

collection of tetrominoes used in the perfect 

solution and constrains the solution to be purely 

based upon those pieces as well. In the example on 

the left, limit_tetris has a limited amount of 

tetrominoes, and once CHECK or CHECK2 find 

differently orientated tetrominoes which 

limit_tetris don’t have enough of, it cannot place                                             

that shape. Hence creating an accurate top 50% of 

the solution and much worse bottom 50%. 

The top half will also be separated into sections. 

The top section will be shapes from CHECK and the 

lower section in the top half will be from CHECK2. 

This is expected as CHECK2 will be able to use 

some tetrominoes which have not been placed and 

then find them with the second direction 

prioritised depth first search.  

 Figure 3: 100x100 using CHECK and CHECK2 only              

Figure 2: 100x100 using CHECK and CHECK2 only              
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Final: 

After CHECK and CHECK2, what’s left are still many pieces in limit_tetris and an average of 40% of the 

solution matrix not filled. The remaining spaces have been found by the initial functions but not enough 

limit_tetris tetrominoes are provided to append those pieces, hence the lack of pieces near the bottom 

50% of the solution.  

Final is the last optimisation needed to fill in the remaining parts. Firstly, the remaining available 

tetrominoes are identified and put into a greedy priority queue. This has been done by sorting 

limit_tetris by the most abundant piece remaining [line 269]. A list 

of set of coordinates of all 19 tetrominoes is created to cross 

reference PID and Tetromino ID. Sets of coordinates are used as 

they have no order and therefore when it comes to appending the 

tetrominoes into the solution matrix, if both sets contain the same 

coordinates, they are the same (figure 4). This make it easier to 

identify tetrominoes instead of immutable tuples or ordered lists. 

CHECK and CHECK2 returns new_tar as a matrix of not only ’1’s and ‘0’s, but also with ‘3’s where the 3 is 

where a piece has been placed and fixed and therefore should not be touched. The function Final will 

call X as a variable which is either 4 or 3. When X = 4, Final is trying to find the most abundant shape 

that will fit into the solution where there are currently 4  ‘1’s. When X = 3, Final is again trying to find the 

most abundant shape that will fit not into a 4 connected ‘1’s but will accept 3 connected ‘1’s and one 

blank space where the perfect solution doesn’t have a block. 

Final then traverses new_tar from top left to bottom right again to find coordinates which are 1s. When 

a first ‘1’ is identified at new_tar[y][x], Final checks the coordinates of the most abundant tetromino 

from limit_tetris, referenced to [y][x] as its origin point (0,0). Final also has a counter = S [line 275] which 

adds up the values of new_tar[y][x] where (y,x) are the coordinates of the most abundant shape and 

new_tar[y][x] should return a 0, 1, or 3. 

In figure 5, the blue blocks are ‘1’s and green are ‘3’s. 

Final would be trying to put the most abundant piece 

into coordinate (2,2). There is overlap of 2 blocks in the 

green area, meaning S + 3 + 3. The white blank space is 

0, and the one blue block is 1. This gives S a total of 7. 

Final equates the called value of X and the value of S. if 

S = X [line 284], which is either 3 or 4, then the function 

decides that adding this tetromino would be beneficial. 

Traversing through new_tar: 

Using the function: locate [line 190-197] the solution traverses 

through the matrix from the top left corner, scans the rows from left 

to right then the next row when finished, ending up at the bottom 

right corner. As new_tar is a matrix of mainly ‘1’s (existing 

Tetromino needing placing) and ‘0’s (no Tetromino), CHECK and 

CHECK2 can easily identify the shapes that it wants to place. Figure 6: Visualising new_tar 

 

 

 

 

 

     

           

                

                

                

                

                

 

Figure 4: Sets of Coordinates 

 

 

 

 

 

     

                    

                         

  

                         

Figure 5: Sets of Coordinates 
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Notation in new_tar exists as new_tar[y][x] where the cartesian plane for the solution provided has 

positive y going downwards and positive x going to the right, with the origin at the top left corner.  

Within CHECK and CHECK2 when new_tar[y][x] == 1, and a piece can be placed on 4 coordinates all with 

value of ‘1’ in the matrix, the Tetromino is appended and all the ‘1’s become ‘0’s. This is to prevent the 

algorithms finding the same coordinate and overlapping. This also is a smaller version of a reduction 

algorithm as after each piece is found, new_tar has less ‘1’s to consider. 

Initially, recursion has been used to find tetrominoes in CHECK and CHECK2, but this direct 

implementation quickly led to hitting maximum recursion depth limit. Therefore, a less direct method 

has been used where CHECK dips in and out of the function checkaround [line 90-128], allowing CHECK 

to find its Tetromino and then come out of the function. This means the function CHECK can find a 4-

node traversal tree and continue to find the next tree without having stacked recursion.  

Placing tetrominoes: 

Every time a Tetromino has been found and needs placing, the coordinates of the piece are added to a 

list called ‘remove’ [lines 237, 224]. There are 2 placing functions, both firstly check if ‘remove’ has 4 

elements. If it does, it takes the associated Tetromino ID (called into the function) and the global PID in 

the form (TID, PID) and changes the items in M with coordinates from ‘remove’ into the new form. Once 

this is done, the values within new_tar are also changed, as this insures new_tar information only 

changes when actual tetrominoes have been placed and are fixed. The function appending is used for 

CHECK and CHECK2, and each time a piece is placed, the new_tar value changes from ‘1’ to ‘3’. Final 

uses its own placing function: Append, which subtracts 10 from each new_tar coordinate when a block is 

placed – making the new number on ‘-9’ on new_tar. 

Running Time:  

The running time of all algorithms combined gives a 

linear running time – constrained by: Big Oh (n), (upper 

asymptotic time) where the combined algorithm is 3 

times the time of just CHECK and CHECK2. The solution 

has kept the time down by using linear or constant time 

algorithms, such as more ‘if’ statements than ‘for’ loops. 

Errors: 

A common error found was the boundary error. This error comes up 

because either new_tar is trying to access negative coordinates or 

place a shape with coordinates within negative boundaries. As you 

can see in figure 8, there are 2 pieces with the wrong TID and PID. 

Their numbers are also shown on the left edge of the solution. Both 

pieces have wrapped around because of the negative coordinates 

that the algorithms are trying to append. The solution is to simply 

define boundaries clearly. This has been done by checking if 

new_tar[y+a][x+b] (where (a,b) are the coordinates within ‘remove’), 

is greater than 0, whilst also being less than the length of the target 

solution and the height of the target solution [line 278]. 

WARNING: 2 pieces have a wrong shapeID. They are 

labelled in image of the solution, and their PieceID 

are: [11, 14]. 

Figure 8: Boundary Error 

Figure 7: Total Running Time vs elements 
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